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Superquadrics [1] can represent various types of primitive shapes with 
three scale parameters and two shape parameters. 

We record three sequences using Kinect v.2. In each sequence, the person is 
standing in front of the camera. 
Baseline Method: We compared the estimation results with the previous 
work [8]. This previous method has been widely used for estimating the initial 
parameter estimation.
1. Qualitative results

2. Quantitative results
We employed Chamfer distance as an evaluation metric if the estimated
superquadric surfaces represented the original point cloud.
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Our proposed method successfully estimated multiple superquadric 
parameters which approximate the point cloud of each body part.

seq1 seq2 seq3 Average
Baseline 1.735 1.671 1.535 1.647
proposed 1.105 1.533 1.349 1.329

Chamfer distance↓ [m] 

seq1
We can verify that our novel initial parameter estimation method found 
more optimal parameters than the previous method [8].
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Superquadrics is employed to approximate shape for object shape 
understanding [2], object grasping [3], collision detection [4].

1. Body joint segmentation

To represent each joint by superquadrics, the point cloud of each joint must 
be extracted. Therefore, we first semantically segment human body into 
joint parts. Next, we estimate superquadric parameters of joints.
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2. Superquadric estimation
Superquadric and its pose parameters Λ 𝜀𝜀1, 𝜀𝜀2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3,𝜃𝜃1,𝜃𝜃2,𝜃𝜃3
are estimated from object point cloud 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘, 𝑧𝑧𝑘𝑘 0 ≤ 𝑘𝑘 ≤ 𝑀𝑀} by Levenberg-
Marquardt algorithm.

As the minimization function is not a convex function, the initial parameters
determine which local minimum the minimization converges to.

We propose a novel approach to estimate initial parameters using 3D skeleton 
joints to find optimal parameter.
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Translation:
Jaklic et.al. [8]: the 3D centroid of 3D points.
Ours: the 3D centroid of 3D joints.

Rotation:
Jaklic et.al. [8]: Eigen vectors of 3D points.
Ours: aligns the z-axis of superquadric surface to be parallel 
to the vector of two connected 3D joints in each body part.
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We employed Light-weight RefineNet [5] trained on PASCAL Person-Part 
dataset [6] .  To segment left/right limbs, we extract 3D joints by the method 
proposed by Shotton et.al [7].
For each pixel labeled as a limb, we calculate 3D Euclidean distance between 
3D joint and each pixel. If the closest joint is left limb, the pixel is labeled as left 
part, and vice versa. 

The idea of automatically sensing the 3D human body has been of interest in 
computer vision. The 3D human body can be represented in many ways, such 
as meshes, parametric models and joint skeletons.
We represent the human body into multiple 3D primitive shapes. 
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Future application: 1. Outfit size estimation, 2. Free viewpoint image 
generation, 3. 3D virtual avatar creation. 


	スライド番号 1

